Problem: Design a cantilever retaining wall using input data.
- Draw cross section of retaining wall showing reinforcement
- Draw longitudinal section showing curtailment.
Design steps:
- Height of Cantilever wall above ground level.
- Density of soil in kN/m3.
- Angle of internal friction in degree.
- Safe bearing capacity of soil in kN/m2.
- Coefficient of friction as 0.5.
- Strength of concrete in M20
- Strength of steek in Fe-415
Minimum depth of foundation
\[{D_f} = \frac{p}{w}{\left( {\frac{{1 - \sin \phi }}{{1 + \sin \phi }}} \right)^2}\]
Overall depth of wall, H = Height of Cantilever wall above ground level +Df
Thickness of base slab.
\[T = \frac{H}{{12}}\]
Adopt Thickness of base slab, TBase = Thickness of stem, TStem
Height of stem, HStem = H-TBase
Width of base slab, WBase =0.5H to 0.6H
Adopt base slab width, WBase
Adopt toe slab width, WToe = ( 1 / 3 ) . WBase
W-topstem = Top width of stem should be 200mm to 300mm.
Maximum bending moment.
\[M = {K_a}\left( {\frac{{w \times {h^3}}}{6}} \right)\]
Factored bending moment.
\[M_{u} = 1.5 \times M\]
Calculate the required effective depth.
\[d = \sqrt {\frac{{{M_u}}}{{0.138 \times {f_{ck}} \times b}}}\]
Calculate the area of steel for stem.
\[{M_u} = \left( {0.87 \times {f_y} \times {A_{st}} \times d} \right)\left( {1 - \frac{{{A_{st}} \times {f_y}}}{{b \times d \times {f_{ck}}}}} \right)\]
Calculate main reinforcement spacing of stem.
\[{S_{stem - main}} = \frac{{As{t_{provided}}}}{{As{t_{required}}}} \times 1000\]
Calculate the distribution steel for stem.
\[D_{st} = 0.12 \times {A_{c/s}}\]
Calculate distribution spacing of stem.
\[{S_{stem - distribution}} = \frac{{As{t_{provided}}}}{{{D_{st}}}} \times 1000\]
Pressure distribution at the base is computed by taking moments of all forces about heel point a
Table: Stability calculation
- Ka = Active earth pressure constant.
- HStem = Height of stem slab.
- TBase = Thickness of base slab.
- WBase = Width of base slab.
- WHeel = Width of heel slab.
- WToe = Width of toe slab.
- W-topstem = Width of stem slab.
- Wtriangle = Width of triangle of stem slab.
- ρSoil = Density of soil.
- ρconcrete = Density of concrete.
Serial No. | Types of loads | Vertical force (kN) | Distance from a (m) | Moment about a (m) |
---|---|---|---|---|
1. | Rectanglur portion of stem slab | W11 = HStem . W-topstem . ρconcrete ( ↓ ) | a11 = ( W-topstem . 0.5 ) + WHeel | M11 = W11 . a1 ( ↶ ) |
2. | Triangular portion of stem slab | W12 = HStem . Wtriangle . ρconcrete ( ↓ ) | a12 = ( Wtriangle / 3 ) + W-topstem + WHeel | M12 = W12 . a12 ( ↶ ) |
3. | Base slab | W2 = TBase . WBase . ρconcrete ( ↓ ) | a2 = WBase . 0.5 | M2 = W2 . a2 ( ↶ ) |
3. | Weight of soil | W3 = HStem . WHeel . ρsoil ( ↓ ) | a3 = ( WHeel . 0.5 ) | M3 = W3 . a3 ( ↶ ) |
4. | Moment of earth pressure ( ← ) | - | - | M4 = 1 /6 .( Ka . ρsoil . HStem3 ) |
5. | Total | ΣW = W1 + W2 + W3 | - | ΣM = M1 + M2 + M3 + M4 |
Distance of point of application of resultant from end a.
\[z = \frac{{\sum M }}{{\sum W }}\]
Eccentricity.
\[e = z - \frac{b}{2}\]
\[e < \frac{b}{6}\]
Minimum and maximum pressures at the base.
\[{\sigma _{_{\max }}} = \frac{{\sum W }}{b}\left( {1 + \frac{{6e}}{b}} \right)\]
\[{\sigma _{_{\min }}} = \frac{{\sum W }}{b}\left( {1 - \frac{{6e}}{b}} \right)\]
We need to check for overturning and sliding
\[{F_1} = \frac{{0.9 \times \sum {{M_s}} }}{{\sum {{M_o}} }} > 1.4\]
ΣMs = Stabilizing moment
ΣMo = Overturning moment
\[{F_2} = \frac{{0.9 \times \mu \sum W }}{{\sum {{P_H}} }} > 1.4\]
ΣPH = Total horizontal pressure.
ΣW = Total weight of retaining wall.
The maximum bending moment on the heel slab is calculated by taking moments of all the forces about the points b.
- σa = Upward soil pressure at a.
- σb = Upward soil pressure at b.
Table: Moments in heel slab
Serial No. | Types of loads | Magnitude of Load ( kN ) | Distance from b ( m ) | Moment about b ( m ) |
---|---|---|---|---|
1. | Earth pressure ( ↓ ) | W1 = HStem . WHeel . ρsoil | a1 = ( WHeel . 0.5 ) | M1 = W1 . a1 ( ↷ +ve ) |
2. | Heel slab ( ↓ ) | W2 = TBase . WHeel . ρConcrete | a2 = ( WHeel . 0.5 ) | M2 = W2 . a2 ( ↷ +ve ) |
3. | Reactangular soil pressure ( ↑ ) | U1 = σa . WHeel | a3 = ( WHeel . 0.5 ) | MU1 = U1 . a3 ( ↶ -ve ) |
4. | Triangular soil pressure ( ↑ ) | U2 = 1 / 2 . ( σb - σa ). WHeel | a4 = ( WHeel . 2 ) / 3 | MU2 = U1 . a4 ( ↶ -ve ) |
5. | Total | - | - | ΣM = M1 + M2 - ( MU1 + MU2 ) |
\[\sum {moment} = M\]
Factored moments.\[{M_u} = 1.5 \times M\]
calulate Area of steel Ast.\[{M_u} = \left( {0.87 \times {f_y} \times {A_{st}} \times d} \right)\left( {1 - \frac{{{A_{st}} \times {f_y}}}{{b \times d \times {f_{ck}}}}} \right)\]
Calculate main bar reinforcement.\[{S_v} = \frac{{As{t_{provided}}}}{{As{t_{required}}}} \times 1000\]
Calculate distribution reinforcement.\[As{t_d} = 0.12\% \times {A_{c/s}}\]
Calculate spacing of reinforcement.
\[{S_v} = \frac{{As{t_{provided}}}}{{As{t_{required}}}} \times 1000\]
The maximum bending moment on the toe slab is calculated by taking moments of all the forces about the points c.
- Df = Depth of foundation.
- σa = Upward soil pressure at c.
- σb = Upward soil pressure at d.
Table: Moments in toe slab
Serial No. | Types of loads | Magnitude of Load ( kN ) | Distance from c ( m ) | Moment about c ( m ) |
---|---|---|---|---|
1. | Earth pressure over toe slab ( ↓ ) | W1 = ( Df-TBase ). WToe . ρsoil | a1 = ( WToe . 0.5 ) | M1 = W1 . a1 ( ↶ -ve ) |
2. | Self weight of toe slab ( ↓ ) | W2 = TBase . WToe . ρConcrete | a2 = ( WHeel . 0.5 ) | M2 = W2 . a2 ( ↶ -ve ) |
3. | Reactangular soil pressure ( ↑ ) | U1 = σc . WToe | a3 = ( WToe . 0.5 ) | MU1 = U1 . a3 ( ↷ +ve ) |
4. | Triangular soil pressure ( ↑ ) | U2 = 1 / 2 . ( σc - σd ). WToe | a4 = ( WToe . 2 ) / 3 | MU2 = U1 . a4 ( ↷ +ve ) |
4. | Total | - | - | ΣM = MU1 + MU2 - ( M1 + M2 ) |
\[\sum {moment} = M\]
Factored moments.\[{M_u} = 1.5 \times M\]
calulate Area of steel Ast.\[{M_u} = \left( {0.87 \times {f_y} \times {A_{st}} \times d} \right)\left( {1 - \frac{{{A_{st}} \times {f_y}}}{{b \times d \times {f_{ck}}}}} \right)\]
Calculate main bar reinforcement.\[{S_v} = \frac{{As{t_{provided}}}}{{As{t_{required}}}} \times 1000\]
Calculate distribution reinforcement.\[As{t_d} = 0.12\% \times {A_{c/s}}\]
Calculate spacing of reinforcement.
\[{S_v} = \frac{{As{t_{provided}}}}{{As{t_{required}}}} \times 1000\]
pp= intensity of passive earth pressure developed just in front of the shear key.
p = soil pressure just in front of the shear key.
Total horizontal earth pressure.\[{P_p} = {K_p}P\]
\[{K_p} = \left( {\frac{{1 + \sin \phi }}{{1 - \sin \phi }}} \right)\]
a = Depth of the shear key.
\[{P_p} = {p_p}a\]
Factor of safety against sliding\[F.S = \left( {\frac{{\mu w + {p_p}}}{P}} \right) > 1.4\]
Ast-shearkey, Minimum percentage of reinforcement in shear key = 0.3%.
\[{A_{st - shearkey}} = 0.003 \times b \times D\]
Calculate spacing of reinforcement.
\[{S_v} = \frac{{As{t_{provided}}}}{{As{t_{required}}}} \times 1000\]
Networking shear force, V
\[V = \left( {1.5\sum{P - \mu W} } \right)\]
Factored shear force, Vu
\[Vu = 1.5 \times V\]
Nominal shear stress, τv
\[{\tau _v} = \frac{V}{{b \times d}}\]
Check for permissible shear stress, Ast-shearkey
\[\left( {\frac{{100{A_{st - shearkey}}}}{{bd}}} \right)\]
From the table:19 of IS:456-2000, permissible shear stress should be within limit.
\[{\tau _c} > {\tau _v}\]
Redesign if, permissible shear stress is more than nominal shear stress.
\[{\tau _c} < {\tau _v}\]
Cross section of cantilever retaining wall.
Longitudinal section of cantilever retaining wall.
No comments:
Post a Comment